WikipediaRetriever
Overviewโ
Wikipedia is a multilingual free online encyclopedia written and maintained by a community of volunteers, known as Wikipedians, through open collaboration and using a wiki-based editing system called MediaWiki.
Wikipedia
is the largest and most-read reference work in history.
This notebook shows how to retrieve wiki pages from wikipedia.org
into the Document format that is used downstream.
Integration detailsโ
Retriever | Source | Package |
---|---|---|
WikipediaRetriever | Wikipedia articles | langchain_community |
Setupโ
If you want to get automated tracing from runs of individual tools, you can also set your LangSmith API key by uncommenting below:
# os.environ["LANGSMITH_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")
# os.environ["LANGSMITH_TRACING"] = "true"
Installationโ
The integration lives in the langchain-community
package. We also need to install the wikipedia
python package itself.
%pip install -qU langchain_community wikipedia
Instantiationโ
Now we can instantiate our retriever:
WikipediaRetriever
parameters include:
- optional
lang
: default="en". Use it to search in a specific language part of Wikipedia - optional
load_max_docs
: default=100. Use it to limit number of downloaded documents. It takes time to download all 100 documents, so use a small number for experiments. There is a hard limit of 300 for now. - optional
load_all_available_meta
: default=False. By default only the most important fields downloaded:Published
(date when document was published/last updated),title
,Summary
. If True, other fields also downloaded.
get_relevant_documents()
has one argument, query
: free text which used to find documents in Wikipedia
from langchain_community.retrievers import WikipediaRetriever
retriever = WikipediaRetriever()
Usageโ
docs = retriever.invoke("TOKYO GHOUL")
print(docs[0].page_content[:400])
Tokyo Ghoul (Japanese: ๆฑไบฌๅฐ็จฎ ๏ผใใผใญใงใผใฐใผใซ๏ผ, Hepburn: Tลkyล Gลซru) is a Japanese dark fantasy manga series written and illustrated by Sui Ishida. It was serialized in Shueisha's seinen manga magazine Weekly Young Jump from September 2011 to September 2014, with its chapters collected in 14 tankลbon volumes. The story is set in an alternate version of Tokyo where humans coexist with ghouls, beings who loo
Use within a chainโ
Like other retrievers, WikipediaRetriever
can be incorporated into LLM applications via chains.
We will need a LLM or chat model:
- OpenAI
- Anthropic
- Azure
- Cohere
- NVIDIA
- FireworksAI
- Groq
- MistralAI
- TogetherAI
pip install -qU langchain-openai
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass()
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(model="gpt-4o-mini")
pip install -qU langchain-anthropic
import getpass
import os
os.environ["ANTHROPIC_API_KEY"] = getpass.getpass()
from langchain_anthropic import ChatAnthropic
llm = ChatAnthropic(model="claude-3-5-sonnet-20240620")
pip install -qU langchain-openai
import getpass
import os
os.environ["AZURE_OPENAI_API_KEY"] = getpass.getpass()
from langchain_openai import AzureChatOpenAI
llm = AzureChatOpenAI(
azure_endpoint=os.environ["AZURE_OPENAI_ENDPOINT"],
azure_deployment=os.environ["AZURE_OPENAI_DEPLOYMENT_NAME"],
openai_api_version=os.environ["AZURE_OPENAI_API_VERSION"],
)
pip install -qU langchain-google-vertexai
import getpass
import os
os.environ["GOOGLE_API_KEY"] = getpass.getpass()
from langchain_google_vertexai import ChatVertexAI
llm = ChatVertexAI(model="gemini-1.5-flash")
pip install -qU langchain-cohere
import getpass
import os
os.environ["COHERE_API_KEY"] = getpass.getpass()
from langchain_cohere import ChatCohere
llm = ChatCohere(model="command-r-plus")
pip install -qU langchain-nvidia-ai-endpoints
import getpass
import os
os.environ["NVIDIA_API_KEY"] = getpass.getpass()
from langchain import ChatNVIDIA
llm = ChatNVIDIA(model="meta/llama3-70b-instruct")
pip install -qU langchain-fireworks
import getpass
import os
os.environ["FIREWORKS_API_KEY"] = getpass.getpass()
from langchain_fireworks import ChatFireworks
llm = ChatFireworks(model="accounts/fireworks/models/llama-v3p1-70b-instruct")
pip install -qU langchain-groq
import getpass
import os
os.environ["GROQ_API_KEY"] = getpass.getpass()
from langchain_groq import ChatGroq
llm = ChatGroq(model="llama3-8b-8192")
pip install -qU langchain-mistralai
import getpass
import os
os.environ["MISTRAL_API_KEY"] = getpass.getpass()
from langchain_mistralai import ChatMistralAI
llm = ChatMistralAI(model="mistral-large-latest")
pip install -qU langchain-openai
import getpass
import os
os.environ["TOGETHER_API_KEY"] = getpass.getpass()
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(
base_url="https://api.together.xyz/v1",
api_key=os.environ["TOGETHER_API_KEY"],
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
)
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
prompt = ChatPromptTemplate.from_template(
"""
Answer the question based only on the context provided.
Context: {context}
Question: {question}
"""
)
def format_docs(docs):
return "\n\n".join(doc.page_content for doc in docs)
chain = (
{"context": retriever | format_docs, "question": RunnablePassthrough()}
| prompt
| llm
| StrOutputParser()
)
chain.invoke(
"Who is the main character in `Tokyo Ghoul` and does he transform into a ghoul?"
)
'The main character in Tokyo Ghoul is Ken Kaneki, who transforms into a ghoul after receiving an organ transplant from a ghoul named Rize.'
API referenceโ
For detailed documentation of all WikipediaRetriever
features and configurations head to the API reference.
Relatedโ
- Retriever conceptual guide
- Retriever how-to guides